Central obesity and coronary risk factors
Arnab Ghosh, Kaushik Bose, Shila Chakravarti, Asif Baran Das Chaudhuri, Jayanti Chattopadhyay, Gautam Dasgupta and Sivaji Sengupta
The Journal of the Royal Society for the Promotion of Health 2004; 124; 86
DOI: 10.1177/146642400412400213

The online version of this article can be found at:
http://rsh.sagepub.com/cgi/content/abstract/124/2/86
Central obesity and coronary risk factors

INTRODUCTION

Obesity is now so common within the world’s population that it is beginning to replace undernutrition and infectious diseases as the most significant contributor to ill health. In particular, obesity is associated with type 2 diabetes, coronary heart disease (CHD) and other associated disorders. Vague first suggested that body fat around the abdomen was related to diabetes and atherosclerosis in both men and women. However, there is no universally agreed way of measuring adiposity, nor is it known which measure is the best predictor of cardiovascular disease.

Several researchers have favoured waist to hip ratio (WHR) arguing that it is a simple, useful and better indicator of risk factors and a better predictor of CHD than other used measures of adiposity such as body mass index (BMI) and waist to height ratio. In some recent studies’ waist circumference (WC) has also been utilised to measure central adiposity. The relationship of WHR with risk factors of CHD has been investigated in different ethnic groups: native Americans, Mexican-Americans, African-Americans, Melanesians, and Central Asians. These studies show that the association of central adiposity with metabolic risk factors is not the same at all levels of adiposity in all ethnic groups. A recent report of the Joint National Committee (JNC) has suggested that a WHR>0.95 in males is associated with a higher coronary risk.

Asian Indians, both in India as well as migrants elsewhere, have unusually high rates of CHD. Studies have investigated the relationship of BMI and WHR with risk factors of CHD among migrant South Asians. Although recent studies from India have investigated the association of WHR with hypertension and other risk factors for CHD, none of these studies have used the JNC cut-off point of WHR>0.95 to classify individuals as centrally obese. Although Dasgupta and Hazra utilised the JNC cut-off point of WHR>0.95 to determine the prevalence of central obesity among Bengalee men and women, they did not study the relationship of central obesity with metabolic risk factors of CHD. Therefore, no information is available on the relationship of WC and WHR with metabolic risk factors of CHD among Bengalees. The present study on Bengalee Hindu men had two...
objectives: firstly, to investigate the relationship of BMI, WC and WHR with some metabolic risk factors of CHD; and secondly, to investigate the relationship of central obesity, at different levels of BMI, on metabolic risk of CHD.

METHODS

Study population
The present study was conducted during December 1999-July 2000 at the Outpatients Department of BR Singh Hospital, Eastern Railways, Calcutta, as part of a collaborative research programme between the Department of Anthropology, University of Calcutta and the Department of Pathology, BR Singh Hospital. Prior to the commencement of the study, written information regarding the aims, objectives and the criteria for eligibility were sent to all employees of the Eastern Railways at Kolkata. Any employee who belonged to the Hindu caste population and was more than 30 years of age was eligible to participate in this health check-up programme. The study sample was therefore representative of the general Bengalee Hindu male population.

Anthropometric and lipid profile measurements were made after the subjects had completed a questionnaire which requested information on their age, occupation, medical history, exercise undertaken and alcohol consumption. Only two subjects were receiving treatment either for high cholesterol or diabetes and they were excluded from the analyses. A total of 14 men had undiagnosed diabetes and they were included in the study since they formed a representative part of the population. Their inclusion did not bias the results when the data were re-analysed without them. The sample size of this study was 130.

Anthropometric measurements
Height, weight, waist and hip circumference measurements were made using standard techniques of Lohman et al. by a trained investigator (AG). Height and weight were measured to the nearest 0.1 cm and 0.5 kg, respectively. Waist and hip circumferences were measured with a tape to the nearest 0.2 cm. BMI and WHR were computed using the standard formulae:

\[\text{WHR} = \frac{\text{WC}}{\text{HC}} \]

\[\text{BMI} = \frac{\text{weight (kg)}}{\text{height}^2 \text{ (m}^2) } \]

The JNC14 criterion of WHR>0.95 was utilised as a cut-off point to define central obesity as suggested by several researchers. It is now widely accepted that a WHR>0.95 in men is associated with lipid abnormalities and confers the highest risk of CHD. The JNC guidelines classify men into two groups: centrally non-obese (CNO) and centrally obese (CO). The cut-off points used were: CNO=WHR<0.95; CO=WHR>0.95. There were 47 and 83 subjects, respectively, in these two groups.

Metabolic variables
A fasting blood sample was collected from each subject for the determination of metabolic variables. All subjects maintained an overnight fast (at least 12 hours duration) prior to blood collection. Plasma was separated by centrifugation at 1,000 x g for 20 min at room temperature within two hours of collection. Estimation of total cholesterol (TC), fasting plasma glucose (FPG) and fasting triglyceride (FTG) were carried out on separated plasma using a Technicon RA-XT autoanalyzer (Technicon Instruments Corporation, NY, USA). High-density lipoprotein cholesterol (HDL-C) was measured after an overnight stand of plasma in a refrigerator and then precipitation of non-high-density lipoproteins (LDL, VLDL, chylomicrons) with manganese-heparin substrate. Values of low-density lipoprotein cholesterol (LDL-C) and very low-density lipoprotein cholesterol (VLDL-C) were

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Anthropometric and metabolic characteristics of the study population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Mean</td>
</tr>
<tr>
<td>Age (years)</td>
<td>50.3</td>
</tr>
<tr>
<td>Anthropometric</td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>164.3</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>64.3</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.8</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>86.0</td>
</tr>
<tr>
<td>HC (cm)</td>
<td>89.7</td>
</tr>
<tr>
<td>WHR</td>
<td>0.959</td>
</tr>
<tr>
<td>Metabolic</td>
<td></td>
</tr>
<tr>
<td>TC (mmol/l)</td>
<td>5.5</td>
</tr>
<tr>
<td>HDL-C (mmol/l)</td>
<td>1.2</td>
</tr>
<tr>
<td>LDL-C (mmol/l)</td>
<td>3.3</td>
</tr>
<tr>
<td>VLDL-C (mmol/l)*</td>
<td>0.3</td>
</tr>
<tr>
<td>HDL/LDL ratio</td>
<td>0.4</td>
</tr>
<tr>
<td>FPG (mmol/l)</td>
<td>6.2</td>
</tr>
<tr>
<td>FTG (mmol/l)*</td>
<td>1.9</td>
</tr>
</tbody>
</table>

*Geometric means are presented.

SD = standard deviation VLDL-C = very low density lipoprotein cholesterol
HC = hip circumference HDL-C = high density lipoprotein cholesterol
TC = total cholesterol LDL-C = low density lipoprotein cholesterol
FPG = fasting blood glucose WHR = waist-hip ratio
WC = waist circumference FTG = fasting triglyceride
WHR = waist-hip ratio
LDL-C = low density lipoprotein cholesterol
VLDL-C = very low density lipoprotein cholesterol
FTG = fasting triglyceride

DISCUSSION
Obesity causes or exacerbates many health problems, both independently and in association with other diseases. Obese individuals with excess intra-abdominal fat are at particular risk of negative health consequences, with certain ethnic populations like migrant Indians carrying different levels of risk. Total body fat appears to be a less important indicator of metabolic complications than the fat distribution pattern.

Although there is no universally agreed way of measuring central adiposity, WHR

Table 2

Pearson correlation coefficients (r) of BMI, WC and WHR with metabolic variables

<table>
<thead>
<tr>
<th></th>
<th>BMI</th>
<th></th>
<th>WC</th>
<th></th>
<th>WHR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
<td>r</td>
<td>p</td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td>TC</td>
<td>0.005</td>
<td>0.954</td>
<td>0.117</td>
<td>0.185</td>
<td>0.245</td>
<td>0.005</td>
</tr>
<tr>
<td>HDL-C</td>
<td>-0.075</td>
<td>0.398</td>
<td>-0.001</td>
<td>0.995</td>
<td>0.115</td>
<td>0.193</td>
</tr>
<tr>
<td>LDL-C</td>
<td>0.008</td>
<td>0.926</td>
<td>0.010</td>
<td>0.909</td>
<td>0.137</td>
<td>0.119</td>
</tr>
<tr>
<td>VLDL-C</td>
<td>0.051</td>
<td>0.565</td>
<td>0.174</td>
<td>0.048</td>
<td>0.230</td>
<td>0.020</td>
</tr>
<tr>
<td>FPG</td>
<td>0.149</td>
<td>0.091</td>
<td>0.177</td>
<td>0.042</td>
<td>0.177</td>
<td>0.042</td>
</tr>
<tr>
<td>FTG</td>
<td>0.047</td>
<td>0.599</td>
<td>0.175</td>
<td>0.046</td>
<td>0.198</td>
<td>0.024</td>
</tr>
</tbody>
</table>

BMI = body mass index
WC = waist circumference
WHR = waist-hip ratio
TC = total cholesterol
HDL-C = high density lipoprotein cholesterol
LDL-C = low density lipoprotein cholesterol
VLDL-C = very low density lipoprotein cholesterol
FPG = fasting blood glucose
FTG = fasting triglyceride
has been found to be the best predictor of cardiovascular disease. A recent report has suggested that a WHR>0.95 in males and WHR>0.85 in females is associated with higher coronary risk. However, the association of central adiposity with metabolic variables is not the same at all levels of adiposity in all ethnic groups.

This study indicated that there is a significant positive association of WC and WHR with TC, VLDL-C, FPG and FTG among Bengalee men. This implied that among Bengalee men, WC and WHR are associated with an enhanced CHD risk factor profile. Bose and Mascie-Taylor in a study conducted in Peterborough, UK, also found that WHR was significantly related to WC among European and migrant Pakistani men. Similar results have been reported from other ethnic groups like African Americans and native British.

Moreover, based on the results of correlation analyses and ANOVA, the present study provided clear evidence that the BMI does not have a significant association with various metabolic risk factors of CHD. Bose and Mascie-Taylor had also reported that the BMI was not significantly associated with TC and FPG among migrant Indians in Britain. It therefore appears that among Indians, both migrants and residents in India (present study), central adiposity is more strongly associated with metabolic risk factors of CHD than BMI.

The presence of a significant positive relationship between WHR and CHD risk factors has limited epidemiological applications unless a specific cut-off point of WHR is used. A specific WHR cut-off point allows direct inter-individual as well as inter-population comparisons. In one study, Dasgupta and Hazra have utilised the JNC cut-off point of WHR=0.88 (median WHR) to define CNO and CO individuals; this is not an established cut-off point. Moreover, it may not be appropriate to use WHR=0.88 for use among adult Bengalee men since Gupta and Majumdar’s study was not undertaken on Bengalees. A further reason for recommending a cut-off point of WHR>0.95 among Bengalee men is that it would enable the comparison of prevalence rates of central obesity as well as lipid abnormalities associated with it in this population with data available from other ethnic groups.

Since there is vast ethnic heterogeneity in India, future studies should determine whether this cut-off point of 0.95 is ‘ethnic-specific’ to Bengalees or is applicable to others resident in India. Furthermore, similar studies on Indian women are needed to test the validity of the JNC14 recommendations for this gender (WHR>0.85). The Indian Diaspora should be studied to determine whether the JNC guidelines can also be applied to them. The Indian Diaspora offers a unique opportunity to study the ‘gene-environment’ interaction involved in the aetiology of CHD. Although investigations from Britain18,20 have studied the relationship of

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA of central obesity status (CNO=no, CO=yes) and BMI tertiles with metabolic variables</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI tertile</td>
<td>2.072</td>
<td>0.130</td>
</tr>
<tr>
<td>Central obesity status</td>
<td>4.270</td>
<td>0.041</td>
</tr>
<tr>
<td>BMI tertile-central obesity status interaction</td>
<td>0.007</td>
<td>0.993</td>
</tr>
<tr>
<td>VLDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI tertile</td>
<td>0.180</td>
<td>0.836</td>
</tr>
<tr>
<td>Central obesity status</td>
<td>5.488</td>
<td>0.021</td>
</tr>
<tr>
<td>BMI tertile-central obesity status interaction</td>
<td>0.186</td>
<td>0.831</td>
</tr>
<tr>
<td>FPG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI tertile</td>
<td>0.193</td>
<td>0.825</td>
</tr>
<tr>
<td>Central obesity status</td>
<td>5.826</td>
<td>0.017</td>
</tr>
<tr>
<td>BMI tertile-central obesity status interaction</td>
<td>0.275</td>
<td>0.760</td>
</tr>
<tr>
<td>FTG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI tertile</td>
<td>0.180</td>
<td>0.836</td>
</tr>
<tr>
<td>Central obesity status</td>
<td>5.488</td>
<td>0.021</td>
</tr>
<tr>
<td>BMI tertile-central obesity status interaction</td>
<td>0.186</td>
<td>0.831</td>
</tr>
</tbody>
</table>

BMI = body mass index
TC = total cholesterol
VLDL-C = very low density lipoprotein cholesterol
FPG = fasting blood glucose
FTG = fasting triglyceride
WHR with CHD risk factors among migrant South Asians, no study has been undertaken on migrant Indians specifically using the JNC guidelines\(^1\) for WHR as a marker for central obesity. Such studies when done in comparison with the native populations should yield valuable information on the ethnic susceptibility to central obesity and its relationship to CHD. Most importantly, prospective studies should be undertaken to obtain the optimum cut-off point to define central obesity among various Indian populations.

ACKNOWLEDGEMENTS

Dr G Hariharan and Dr N Ghosh of Eastern Railways, are gratefully acknowledged for granting permission as well as providing the necessary facilities to undertake this study. Dr Kaushik Bose was a recipient of a Senior Research Associateship of the Council for Scientific and Industrial Research, Government of India. The technical staff of the Department of Pathology, BR Singh Hospital are acknowledged for their help during data collection. Grateful thanks are also due to Departmental Special Assistance Phase-II, University Grants Commission Programme, Department of Anthropology, Calcutta University, for providing financial assistance. Professor Ranjana Roy, Head of Department, Department of Anthropology, University of Calcutta is acknowledged for providing the necessary facilities to conduct this study.

References

7 Wei M, Gaskill SP, Hoffner SM, Stern MP. Waist circumference as a best predictor of NIDDM compared to BMI, WHR and other anthropometric measures in Mexican-American: a seven year prospective study. *Obes Res* 1997;5:16-23
We would like to express our warm appreciation of the substantial time and expertise that our referees have provided over the last year, helping to enhance the quality of published papers. (Some referees have preferred to remain anonymous.)

Mohammad Ameen
Graham Aston
Madan R Bahl
Steve Barrass
Sandra Barry
David Bender
Jim Biggs
Mabel Blades
Andrew D Blann
Ibrahim I Bolaji
Joanna Bowtell
Harry Brewer
Geoffrey Brundrett
Amanda Button
Martin Chaplin
Neil Charman
Rakesh Chopra
Vassiliki Costarelli
Derek Cruickshank
Derrick Crump
Carole A Cull
G Jill Davies
John W T Dickerson
Christine Dickinson
David Donaldson
Raymond J Donaldson
Damien Downing
David Edwards
Toyon Ejidokun
M Elisaf
David J Finney
Philip Fleming
Len Goldstone
Adrian Gossage
Dinah Gould
John Guillebaud
Mike Halls
Harold D Harvey
Anthony Hawkes
Roger Hoare
Selwyn Hodge
Sue Holmes
Stuart J Horner
David Jeffs
Hugh H John
A Mac Johnston
Thomas E Jordan
William Kelly
David Lane
Jeremy Leach
Sammy Lee
Anthony R Leeds
Alexander K C Leung
Helen J Lightowler
Maria Lis-Balchin
Doug MacInnes
Kevin Maguire
Hardipp Mann
Vincent Marks
Anna Maslin
Robert Mason
Peter J May
Andrée le May
Dimitri Mikhailidis
Jane Morgan
Devi R Nair
Carol Noble
Abayomi A Opaneye
Rod Owen
Chris Packham
Paul Palmer
Theresa Phillips
Norman Platt
Bashir Qureshi
William J Reilly
Christopher H Rena
Bryan Reuben
Nagamanickam Sai Sankar
D Shah
Heema Shukla
Sabine Sonnenberg
Antony Stewart
Jill Stewart
Andrew Taylor
Helen Taylor
Steve Tee
Mohammed Twaij
Gerald Vinten
Alexander R P Walker
Susan Ward
Sarah White
William Whitfield
Anthony S Wierzbicki
Richard Willis
Ivan C J Wood